Check answers to ch. 8 review sheet:

$$
\begin{array}{rll}
\text { 1. A } & \text { 12. A } & \text { 17. D } \\
\text { 2. B } & \text { 13. B } & \text { 18. A } \\
\text { 8. B } & \text { 14. D } & \text { 19. D } \\
\text { 10. A } & \text { 15. C } & \text { 20. C } \\
\text { 11. D } & \text { 16. D } & \\
& &
\end{array}
$$

Trig information sheet \rightarrow HELPFUL STUDY T00L FOR FINAL EXAM!

Quiz yourseli: complete as much as possible without looking at your notes!

Label each set of given coordinates and write the corresponding radian value.

This page is OPTIONAL work, although you will be expected to know the content for the final exam.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=- & \tan \theta=- \\
\csc \theta=\frac{r}{y} & \sec \theta=- & \cot \theta=-
\end{array}
$$

Principal Values are used to find unique solutions:
$\operatorname{Sin} x$ and $\operatorname{Tan} x$, refer only to Quadrant \qquad or \qquad .
$\operatorname{Cos} x$, refer only to Quadrant \qquad or \qquad -

Name the function that best completes each identity statement:

Reciprocal identities:

1. $\quad\left[=\frac{1}{\sec \theta}\right.$
2.

$=\frac{1}{\sin \theta}$
3. $-\quad=\frac{1}{\cot \theta}$
4. $=\frac{1}{\csc \theta}$
5. $=\frac{1}{\tan \theta}$
6. $=\frac{1}{\cos \theta}$

Quotient Identities:
7. $-=\frac{\cos \theta}{\sin \theta}$
8. $=\frac{\sin \theta}{\cos \theta}$

Double Angle Identities:

9. $\sin (2 \theta)=$ \qquad
10. $\cos (2 \theta)=\cos ^{2} \theta-$ \qquad

Pythagorean identities:
11.

$$
\square^{+}=1
$$

12. $\tan ^{2} \theta+1=$ \qquad
13. $1+\cot ^{2} \theta=$ \qquad
14. Clearly show how to derive the Pythagorean identities in \#12 and \#13 from the identity given in \#11.

HINT: use division

CHECK YOUR ANSWERS!!
Trig information sheet \rightarrow HELPFUL STUDY TOOL FOR FINAL EXAM! Quiz yourself: complete as much as possible without looking at your notes!

Label each set of given coordinates and write the corresponding radian value.

This page is OPTIONAL work, although you will be expected to know the content for the final exam.

Principal Values are used to find unique solutions: $\operatorname{Sin} x$ and $\operatorname{Tan} x$, refer only to Quadrant \qquad or DV Cos x, refer only to Quadrant $\frac{I}{t}$ or $\frac{T}{-}$

CHECK YOUR ANSWERS!!
Name the function that best completes each identity statement:

Double Angle Identities:
9. $\sin (2 \theta)=2 \sin \theta \cos \theta$
10. $\cos (2 \theta)=\cos ^{2} \theta-\sin ^{2} \theta$

Final exam info:

45 questions, 90 points.
Multiple choice, NO calculator.
Fill in unit circle, use it to find exact values.
\# of questions
8 Ch. 8 polar coordinates/equations
9 Ch. 11 conics
5 Ch. 13 limits
23 Trig: unit circle, triangles, all 6 functions, identities, principal values

Page 1 of pink sheet will be provided on final exam

Polar Coordinates
$r^{2}=x^{2}+y^{2}$ or $r=\sqrt{x^{2}+y^{2}}$
$\tan \theta=\frac{y}{x}$
$x=r \cos \theta$
$y=r \sin \theta$
polar form of a complex number $r(\cos \theta+i \sin \theta)$
$z_{1} \cdot z_{2}=$
$r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right]$
DeMoivre's Theorem
$[r(\cos \theta+i \sin \theta)]^{n}$
$=r^{n}(\cos n \theta+i \sin n \theta)$

Conic Sections
 Circles
 $(x-h)^{2}+(y-k)^{2}=r^{2}$

Ellipses

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1
$$

Foci $(\pm c, 0), c^{2}=a^{2}-b^{2}$
Foci $(0, \pm c), c^{2}=a^{2}-b^{2}$

Equations and Graphs of Parabolas

You will fill in the blanks for principal values, unit circle, and identities on final exam day.

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=- & \tan \theta=- \\
\csc \theta=\frac{r}{y} & \sec \theta=- & \cot \theta=-
\end{array}
$$

Principal Values are used to find unique solutions:

$\operatorname{Sin} x$ and $\operatorname{Tan} x$, refer only to Quadrant \qquad or \qquad .

Cosx, refer only to Quadrant \qquad or \qquad .

After filling in the blanks, you may use the information for reference during the exam.

Name the function that best completes each identity statement:

Reciprocal identities:

$$
\begin{aligned}
& 1 . \\
& =\frac{1}{\sec \theta} \\
& \text { 2. } \\
& =\frac{1}{\sin \theta} \\
& \text { 3. }- \\
& =\frac{1}{\cot \theta} \\
& 4 . \\
& =\frac{1}{\csc \theta} \\
& 5 . \\
& =\frac{1}{\tan \theta} \\
& \text { 6. } \\
& =\frac{1}{\cos \theta}
\end{aligned}
$$

Quotient Identities:

$$
\begin{aligned}
& \text { 7. } \quad=\frac{\cos \theta}{\sin \theta} \\
& \text { 8. } \\
& =\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

Double Angle Identities:

9. $\sin (2 \theta)=$ \qquad
10. $\cos (2 \theta)=\cos ^{2} \theta-$ \qquad

Pythagorean identities:

11. \qquad $+$ \qquad $=1$
12. $\tan ^{2} \theta+1=$ \qquad
13. $1+\cot ^{2} \theta=$ \qquad
14. Clearly show how to derive the Pythagorean identities in \#12 and \#13 from the identity given in \#11.

HINT: use division

Principal Values:

Principal values create a unique (one) solution:
$\operatorname{Sin} \theta$ and $\operatorname{Tan} \theta \rightarrow$ Quadrant I (+) Quadrant IV (-) $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
$\operatorname{Cos} \theta \rightarrow$ Quadrant I (+) Quadrant II (-)

$$
0 \leq \theta \leq \pi
$$

